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Abstract. The digitalization of the urban infrastructure and pervasiveness of mobile handsets allows
to model the movement and communication patterns of people in the city. In this paper, we focus on
automatically detecting unusual behavior (events) in the city of Barcelona by analyzing aggregated
data from two urban sensors: cell phone towers and shared bicycle rentals. We use a state-of-the-art
novelty detection algorithm and compare its performance to two alternative approaches. In addition, we
design a simple tree classifier to distinguish between three types of unusual days: rainy days, holidays
and days with special events.

1 Introduction

Our interactions in the physical world are increasingly leaving behind digital footprints. The analysis of
these digital footprints by means of statistical tools and machine learning techniques has been coined Reality
Mining [?]. The ultimate goal of reality mining techniques is to provide a deeper understanding about our
lives, both at the individual and collective levels.

Observing and modeling human behavior in urban environments is central to traffic forecasting [?],
understanding the spread of biological viruses [?], designing location-based services, improving urban in-
frastructure and cellular network efficiency and detecting urban hotspots. A key difficulty faced by urban
planners, virologists, and social scientists is that obtaining large, real-world observational data of human
urban behavior is challenging and costly [?]. As websites have evolved to offer geo-located services, new
sources of real-world behavioral data have begun to emerge. In addition, as city-wide urban infrastructures
such as buses, subways, public utilities, and roads become digitized, other sources of real-world datasets
that can be implicitly sensed are emerging. For example, recent work [?] has proposed a novel source of
real-world human behavioral data from a new type of urban infrastructure: shared bicycling systems. They
have successfully used bicycling station usage data to infer cultural and geographic aspects of the city and
predict future station usage behavior, which corresponds to human movement in the city.

Mobile phones play a key role as sensors of human behavior because they typically are owned by one
individual that carries them at almost all times and are nearly ubiquitously used.

While most of the previous work has focused on modeling typical human urban behavior, in this paper we
turn our attention towards the automatic detection of interesting events or anomalous behavior at the city
level and from two sources of digital footprints: shared bicycling and cell tower activity. Detecting atypical
or novel events in an urban environment has several applications, including network management, traffic
prediction and city planning. We analyze the value and limitations of two urban sensors that are part of
the city infrastructure (shared bicycling and cell phone towers) and that provide partial information about
the aggregated human behavior in the city. To the best of our knowledge, our work is the first to jointly
analyze data obtained from these two types of urban sensors in order to detect and classify unusual behavior
at the city level. Note that these large scale urban datasets tend to exhibit high levels of noise and periodic
patterns.

The term event is sometimes used in the time-series literature to refer to individual measurements (e.g.,
a call happening during a certain time of the day, a bicycle taken from a station at time t). In this work,
however, we use the term event to refer to an activity that is unusual relative to normal patterns of behavior,
such as unusually high or low phone call or bicycling activity. Hence, in our analysis we need to take into
account both the patterns of typical and predictable behavior, along with the deviations from this behavior.
This leads to one of the main challenges in event or anomaly detection: detecting anomalous periods of time
requires some knowledge of what constitutes normal behavior. However, our datasets consist of both normal
and anomalous (event) data mixed together without the availability of ground truth on what constitutes an
event.

Hence, the main contributions of this paper are:



2

– We propose a set of meaningful features that can be extracted from the two sources of real life input
data: shared bicycling and cell tower activity;

– We automatically detect anomalous urban behavior by adapting a state-of-the-art novelty detection
approach to our datasets;

– We propose a post-processing method to merge the events detected from each of the two urban sensors
and automatically classify the detected anomalies into three types: weather, holidays and special events.

2 Related Work

Event detection can be regarded as one kind of anomaly or outlier detection. The survey paper [?] classifies
the type of anomalies that can be detected into three categories: point, contextual and collective anomalies.
If an individual data instance is considered to be an anomaly with respect to the rest of the data, then
the instance is termed as a point anomaly. Unusual events in time-series, spatial or graph data are called
contextual anomalies because each data point is composed of both the actual feature and its contextual
attributes (e.g., time index, location information, graph topology, etc.). Finally, collective anomalies are a
generalization of contextual anomalies where the goal is to detect a subsequence of a time-series, a local region
of spatial data, or a subgraph as anomalous. Collective anomaly detection is generally the most challenging
task of the three. In this paper we focus on anomaly detection from noisy spatio-temporal data and hence
the problem that we tackle falls into the last category. A standart method that is often used for anomaly
detection is the one-class Support Vector Machine (SVM) [?].

Event detection from spatio-temporal time series has been studied in the area of sensor networks. For
example, Yin et al. [?] have recently proposed – and successfully applied to light sensor network data –
a spatio-temporal event detection approach based on dynamic conditional random fields (DCRF), which
handles the uncertainty of sensor data and allows neighborhood interactions [?]. Events are usually detected
in sensor networks as a deviation from some constant background signal. These techniques cannot be easily
applied to our problem because they typically assume that no pattern is recurrent in the sensor network.
However, aggregate human urban behavior is often recurrent, particularly when each day’s measurement is
taken as an independent data point.

In [?], all the co-evolving sequences are modeled with a spatio-temporal moving average model whose
parameters are estimated via standard regression. The estimation error is assumed to follow a Gaussian
distribution and outliers/anomalies are detected when the measurement is two times the standard deviation
away from the estimated value. This method is simple and efficient. However, the moving average model is
assumed to be time-invariant and hence cannot capture the more general non-stationary processes that are
found in our datasets.

We shall highlight next the work by Ihler et al. [?] who use a model-based Markov chain Monte Carlo
(MCMC) algorithm applied to freeway traffic data, which is assumed to be the superposition of a normal
and an abnormal time series, both of which are modeled as Poisson counting processes. Moreover, there is
a hidden state at each time instant which indicates the occurrence of event and the evolution of the hidden
states are modeled as a two-state Markov process. The model parameters are estimated by means of the
MCMC algorithm. Although this approach is certainly appealing, it would be difficult to directly apply it to
our problem for several reasons: the model for freeway traffic data is very specific to the traffic problem and
hence does not capture the potential events in datasets of different nature, such as ours. For example, in our
shared bicycling dataset there are fewer bicycles on the road during rainy days but this kind of abnormality
would not be captured by the MCMC model. In addition, the events at different time instants are all modeled
to be Poisson random variables with the same parameter, which when applied to our noisy datasets would
result in a high false alarm rate.

Given the challenges and peculiarities of our datasets, we propose to use the general non-parametric
adaptive anomaly detection algorithm proposed in [?], which is called localized p-value estimator (LPE).
LPE is an efficient and provably optimal algorithm in the sense that it is uniformly most powerful for the
specified false alarm level for the case that the anomaly density is a mixture of the nominal and any other
density [?]. Another advantage of LPE is that it does not require the tuning of complex parameters and
hence it is less sensitive than other approaches to the specific datasets.

3 Data

We analyze shared bicycling and cell phone activity data in the city of Barcelona (Spain) for 108 full weekdays,
from September 1, 2009 to March 15, 2010. We had to exclude Sep. 16 to Sep. 30, 2009, Nov. 9, 2010, Nov.
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11 to Nov. 30, 2010 and Feb. 26, 2010 because of limited access to cell phone call records. We focus our
analysis on weekdays, excluding Saturdays and Sundays, because behavioral patterns typically show larger
variation during weekends.

We shall describe next the two datasets that are the object of our study.

3.1 The Shared Bicycle Dataset

Barcelona’s shared bicycle program, Bicing, was launched in March of 2007 and has currently about 400
stations and 115,000 subscribers. Bicycles are checked out by swiping an RFID membership card at a Bicing
station kiosk, which unlocks bicycles and displays their rack location on an LCD screen.

Bicing is open from 5AM to 12AM on Sunday through Thursday and 24 hours during the weekend.
The Bicing website reports the status of all bicycle stations via a Google Maps visualization. We scrape
this webpage every two minutes and extract three data elements per station: the station’s geo-location, the
number of available bicycles and the number of vacant parking slots, based on which the percentage of
availability can be derived. This dataset can be regarded as a spatial-temporal process. The data scraped
from the Bicing website is noisy due to temporary station closures, maintenance work, connectivity failures,
web site time-outs, etc. Hence, we employ the three-step data cleansing method that is described in [?] and
[?] to detect and eliminate faulty observations.

Feature extraction We compute the shared bicycling activity feature vector as follows: For each of the
390 stations that produced valid data during the period of interest, we calculate the absolute difference
between two consecutive observations and average this difference in one-hour bins. Suppose the 30 original
measurements – we obtain one measurement every 2 minutes – in a one-hour bin are N1, · · · , N30. Then the
hourly activity is defined as

∑29
i=0 |Ni−Ni+1|. The median of the hourly activity of all stations is calculated

and normalized to values between 0 and 100 to yield the aggregated Bicing daily activity feature vector of
length 24, one entry per hour (see Figure ??).

3.2 The Cell Phone Dataset

Call Detail Records (CDRs) are generated when a cell phone that is connected to a mobile phone network
makes or receives a phone call or uses a service (e.g., SMS, MMS, etc.). For invoice purposes, this information
is logged together with the cell tower ID which gives an indication of the geographical position of the user.
We analyze the anonymized CDRs for one cell phone operator in the city of Barcelona and during the time
period of study.

Feature extraction We analyze a total of about 324 million phone calls and SMS messages in Barcelona
in the period between from Sep. 1 and Mar. 15, 2010. In order to yield a dataset that is comparable to the
aggregated Bicing activity, we extract the total number of SMS/MMS and calls that were made/received per
hour in the 1392 cell towers that are inside the area that is covered by Barcelona’s shared bicycling system.
Again, a normalization to [0, 100] is applied to calculate the daily cell phone activity feature vector of length
24.

3.3 Ground Truth Data

We extract two types of ground truth data: Firstly, we identify holidays from an official calendar from the
city of Barcelona. Our event detection algorithm will point us to days that are not in this calendar, although
these are perceived by some as holidays, e.g. December 24, or long weekends on which many Spaniards do
not go to work (e.g., a Monday that is followed by a holiday). However, these days are not part of the ground
truth of holidays; Secondly, we detect days with a daily precipitation ≥ 1 mm. This data suffers from a lack
of spatial precision: we have only the data from Barcelona’s airport4 while precipitation in Barcelona could
be locally confined. Rain is an interesting phenomenon since it affects the usage of the Bicing system while
the number of cell phone calls is probably unaffected.

4 from http://www.wunderground.com
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Fig. 1. Normal vs. Anomalous days: Example of aggregated normalized activity as a function of the hour for March
10, 2010 (normal day, solid line) and March 08, 2010 (anomalous day due to snow, dashed line). Bicing activity is
shown in blue and cell phone activity in red. In the anomalous day, the Bicing activity decreases while the cell phone
activity increases when compared to a normal day.

4 Event Detection Algorithm

Assume a training set S = {x1, x2, · · · , xn} and xn+1 as a test point, where in our case each point xi is a
feature vector of length 24 (as previously explained). Since the activity feature vectors from both datasets
have the same format, we treat them exactly the same way in the event detection stage. We will later merge
the event detection results.

The Localized p-value Estimator (LPE, [?]) method can be summarized as follows. First we calculate the
pairwise Euclidean distances dij = ‖xi − xj‖2 between all the points in order to form a K-nearest neighbor
graph (K-NNG) by connecting each xi to the K closest points {xi1 , · · · , xiK} in S − {xi}. Note here that
any distance measure d can be used instead of the Euclidian distance. We then sort the K-nearest distances
for each xi in increasing order di,i1 ≤ · · · ≤ di,iK and denote RS(xi) := di,iK , that is, the distance from xi
to its K-th nearest neighbor. The LPE score function:

p̂K(xn+1) =
1

n

n∑
i=1

I{RS(xn+1)≤RS(xi))} (1)

maps the test data xn+1 to the interval [0, 1], where I{·} is the indicator function. Finally, a test point xn+1

is declared to be an “anomaly/event” at a pre-defined significance level α, if p̂K(xn+1) ≤ α. It is proven in
[?] that asymptotically the empirical false alarm rate for LPE converges to α and the mis-detection rate is
minimized under the significance level α.

In real applications, the nominal training set is always acquired via human labeling. Acquiring this
information is often time-consuming and - as in the case of special events - badly defined or even impossible.
Interestingly, even under the unsupervised learning setup where we don’t know whether the element in
S = {x1, x2, · · · , xn} is normal or not, the above LPE algorithm can still be applied. However, in this case,
the pre-defined significance level α no longer reflects the empirical false alarm, but it becomes a parameter
which reflects the percentage of anomalies that we expect in the dataset.

A crucial factor in the LPE algorithm is the choice of the distance metric d(xi, xj). In our application,
since we already make our detection robust by binning the data to create the feature vector, the simple
Euclidean distance yields to good performance.

Start and end of the event: Since the feature vector represents a time-series, we are also interested in the
start time and end time of events. For this purpose, we apply the following simple yet effective thresholding-
based method to the days that have been identified as “anomaly/event”:
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1. Compute the difference D between the fea-
ture vector of the event day and the average
feature vector among all days;

2. Pick up a threshold β;
3. Initialize with start = 1 and end = 24;
4. Repeat until end − start = 1 or no further

change is made:
(a) If |D(start)| ≤ β, increase by 1;
(b) If |D(end)| ≤ β, decrease by 1;

5. Output: start and end;

We use the start/end information to determine the duration of the event in the event classification step (see
Section ??).

4.1 Evaluation of the Event Detection Algorithm

In this section, we compare our localized p-value estimation algorithm (LPE) to two alternative algorithms:
the popular one-class Support Vector Machine (OCSVM) and a difference thresholding algorithm (DIFF).
The DIFF method is a simple thresholding-based algorithm, in which we compute the difference between
each day’s value and the average, then calculate the `1 norm of this difference vector (i.e., the total absolute
difference) and finally compare this value to a threshold to declare the event. These three approaches contain
tuning parameters which explicitly or implicitly control the number of detected events. For the performance
comparison, we use only the Bicing dataset, because this allows us to use both holidays and rainy days as
ground truth (cell phone activity is not as significantly affected by rain as bicycling is).

The use of the Bicing data also allows us to utilize a larger dataset in this comparative analysis: We use
245 weekdays between August 31st 2009 and August 6th 2010 for which we have a total of about 68 million
observations. In this period, we identify a total of 115 days with ground truth events: 19 holidays and 102
rainy days of which 6 overlap.

Note that we are interested in minimizing the false positive rate of the algorithms in order to make sure
that all detected events are real events. We therefore settled on parameter settings of the three algorithms
that yields 44 detected events. The false positive rate of the algorithms increased significantly with a larger
number of events, hence lowering the overall confidence on the event detection system. We understand that
this is a limitation of our evaluation methodology. Also note that there is a certain level of noise in our ground
truth: a few of the days that were labeled as rainy had minimal precipitation in the city of Barcelona. We
therefore consider the precision of the algorithms to be more important than their recall.

We adjust the parameters of all three algorithms so that they detect the exact same number of events
(44) in the Bicing dataset. We adjust the parameter of the LPE algorithm to yield a maximum number of
detected events while avoiding false positive detections. We then tune the parameters of the OCSVM and
DIFF algorithms to yield the same number of detected events. Table ?? shows the performance of the three
algorithms. Based on this, we compute the precision, recall and F1 measures, see Figure ??.

Quite surprisingly, the DIFF algorithm, though simple and naive, still does a much better job than the
more sophisticated the OCSVM algorithm. This phenomenon might be ascribed to the fact that OCSVM
is not very robust to a highly noisy dataset such ours. We also observe that LPE clearly outperforms both
OCSVM and DIFF in terms of F1, recall and precision.

While we fix the precision of the LPE algorithm, its recall rate outperforms that of OCSV and DIFF.
Note that the task of event detection with real-life data is inherently hard, since the definition of what
constitutes an event can be ambiguous. The evaluation will thus not reflect the exact performance of the
algorithms since it is very difficult to define objective ground truth, i.e., although we have information about
precipitation in Barcelona we do not know whether it was strong enough to actually affect the Bicing usage.
The evaluation should thus be regarded as an indication of the level of performance of the algorithms rather
than a hard proof.

5 Event classification

We ran the LPE event detection algorithm on the 108 weekdays for which we had data from both data
sources (Bicing and cell phone activity). After pre-processing and for each data source, we created 108 (for
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LPE event non event
detected event 44 0
detected non event 71 (3) 130

OCSVM event non event
detected event 30 14
detected non event 85 (3) 116

DIFF event non event
detected event 37 7
detected non event 78 (8) 123

Table 1. 2x2 frequency tables for the three methods for the 115 event days and 130 non event days. The false
negatives contain a large number of rainy days: the false negatives that are holidays are given in parenthesis.

Fig. 2. Precision, recall and F1 measure for the three event detection algorithms. LPE clearly outperforms OCSVM
and DIFF

each day) 24-dimensional feature vectors and used identical parameters for the event detection on both
datasets. In these datasets, our algorithm detected a total of 32 events, where 29 events were found in the
Bicing dataset and 18 events in the cell phone dataset (15 events were detected in both datasets). We also
compute the duration of each event as the difference between its start and end points (see Section ??).

We now present a simple algorithm to automatically classify these events. We are interested in classifying
the type of event into three classes: rainy days, holidays and special events. The latter are days that are
neither holidays nor rainy days, but that are detected as events.

To this end, we employ a simple classification tree where the event is characterized by its intensity, given
by the Euclidean distance to the median pattern, and its duration. The intensity and duration of all detected
events (in either Bicing or cell phone data) is given as input to the tree in order to classify the type of the
event.

The resulting tree is depicted in Figure ??. We observe that weather events can be easily picked up by
the fact that the cell phone call activity remains unchanged while the Bicing activity changes (the Bicing
activity actually drops consistently, but this information was not needed in our event classification). For days
where both call and Bicing usage behavior are unusual, the call behavior deviation makes the difference: if
less-than-average calls were made, its a holiday while special events are characterized by more phone calls.

Of particular interest are the days that fell in the category of special events, because these were unusual
days that were discovered by the algorithm and for which we did not have an a priori explanation. We
took a deeper look at what made such days peculiar and asked several locals for possible explanations.
Their consensus is listed in Table ??. Interestingly, we were able to find a convincing explanation for all of
these days. The relative increase or decrease of cell phone activity corresponds to the interpretation of these
days as special events (more activity) or holidays (less activity). Note how the days before Christmas were
detected as special events with an increased CDR activity while the first weekday after Christmas showed
(as the holidays themselves) a decreased CDR activity. This qualitative method is of course inherently blind
to events that our algorithm failed to detect (false negatives).
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Fig. 3. Classification tree of the event types based on the CDR and Bicing events and the level of activity.

Surprisingly, there were a few days (e.g. Easter Monday) that – contrary to our expectation – were not
discovered by our algorithm because they did not appear to significantly differ from the city’s usual behavior.

In addition to discovering unusual behavior (events) from these type of real-life data, our algorithm
characterizes each event in terms of its intensity and duration. Therefore, we are able to quantify the impact
that various contextual factors (e.g., rain, holidays...) have on the city’s aggregated behavior (as perceived
by the shared bicycling and cell phone activity sensors). In this regard, we found that special events like
unusual amounts of snow had the largest impact on the city’s behavior, followed by holidays.

Date
Activity
in CDR Description

14.09 2009 more First day of school. At 2pm kids leave school
22.10 2009 more Unusual heavy rains, major public transport problems
07.12 2009 less Unofficial holiday between a Sunday and a holiday
18.12 to

24.12 2009 more Before Christmas, shopping activity
28.12 2009 less After Christmas, unofficial holiday
08.03 2010 more A lot of snow, Barcelona collapses
09.03 2010 more Day after the heavy snow public transport problems

Table 2. Complete list of all days for which the CDR data has been classified as event. The consensus of possible
explanations from several locals from Barcelona is given for each event

6 Conclusions

In this paper, we have shown the feasibility of an automatic event detection algorithm (LPE) applied to
data from two urban sensors: shared bicycling and cell phone activity. The use of these two datasets of
different nature allows us to detect more events and to characterize the event type. Moreover we show that
the LPE algorithm outperforms OCVSM and DIFF in terms of event detection and shows good precision
characteristics.
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In future work, we plan to explore the impact of deviations in temporal activity patterns for more fine
grained event classification. We are also interested in jointly analyzing the data from these two urban sensors
at the feature level rather than at the decision level. Better spatial granularity would enable us to detect
locally confined events. For this purpose, we are working on a clustering algorithm that joins stations and
cell towers with similar behavior. Finally, we would like to design an online extension of LPE to allow for
real-time event detection.
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